raft算法

Paxos和Raft都是为了实现Consensus一致性这个目标,这个过程如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。

Paxos和Raft的区别在于选举的具体过程不同。
在Raft中,任何时候一个服务器可以扮演下面角色之一:

  • Leader: 处理所有客户端交互,日志复制等,一般一次只有一个Leader.
  • Follower: 类似选民,完全被动
  • Candidate候选人: 类似Proposer律师,可以被选为一个新的领导人。

Raft 算法在许多方面和现有的一致性算法都很相似(主要是 Oki 和 Liskov 的 Viewstamped Replication),但是它也有一些独特的特性:

  • 强领导者:和其他一致性算法相比,Raft 使用一种更强的领导能力形式。比如,日志条目只从领导者发送给其他的服务器。这种方式简化了对复制日志的管理并且使得 Raft 算法更加易于理解。
  • 领导选举:Raft 算法使用一个随机计时器来选举领导者。这种方式只是在任何一致性算法都必须实现的心跳机制上增加了一点机制。在解决冲突的时候会更加简单快捷。
  • 关系调整:Raft 使用一种共同一致的方法来处理集群成员变换的问题,在这种方法中,两种不同的配置都要求的大多数机器会重叠。这就使得集群在成员变换的时候依然可以继续工作。

Raft的优势

  • 更简单,更容易理解

Paxos算法的问题

在过去的 10 年里,Leslie Lamport 的 Paxos 算法几乎已经成为一致性的代名词:Paxos 是在课程教学中最经常使用的算法,同时也是大多数一致性算法实现的起点。Paxos 首先定义了一个能够达成单一决策一致的协议,比如单条的复制日志项。我们把这一子集叫做单决策 Paxos。然后通过组合多个 Paxos 协议的实例来促进一系列决策的达成。Paxos 保证安全性和活性,同时也支持集群成员关系的变更。Paxos 的正确性已经被证明,在通常情况下也很高效。

不幸的是,Paxos 有两个明显的缺点。

问题一:难以理解

Paxos 算法特别的难以理解。完整的解释是出了名的不透明;通过极大的努力之后,也只有少数人成功理解了这个算法。因此,有了几次用更简单的术语来解释 Paxos 的尝试。尽管这些解释都只关注了单决策的子集问题,但依然很具有挑战性。在 2012 年 NSDI 的会议中的一次调查显示,很少有人对 Paxos 算法感到满意,甚至在经验老道的研究者中也是如此。我们自己也尝试去理解 Paxos;我们一直没能理解 Paxos 直到我们读了很多对 Paxos 的简化解释并且设计了我们自己的算法之后,这一过程花了近一年时间。

我们假设 Paxos 的不透明性来自它选择单决策问题作为它的基础。单决策 Paxos 是晦涩微妙的,它被划分成了两种没有简单直观解释和无法独立理解的情景。因此,这导致了很难建立起直观的感受为什么单决策 Paxos 算法能够工作。构成多决策 Paxos 增加了很多错综复杂的规则。我们相信,在多决策上达成一致性的问题(一份日志而不是单一的日志记录)能够被分解成其他的方式并且更加直接和明显。

问题二:

Paxos算法的第二个问题就是它没有提供一个足够好的用来构建一个现实系统的基础。一个原因是还没有一种被广泛认同的多决策问题的算法。Lamport 的描述基本上都是关于单决策 Paxos 的;他简要描述了实施多决策 Paxos 的方法,但是缺乏很多细节。当然也有很多具体化 Paxos 的尝试,但是他们都互相不一样,和 Paxos 的概述也不同。例如 Chubby 这样的系统实现了一个类似于 Paxos 的算法,但是大多数的细节并没有被公开。

扩展阅读